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Abstract

This white paper presents the Quorum-Theoretic Semantic Decoding Model (QTSD), a rig-
orous mathematical framework for extracting semantic content from multi-agent acoustic
communication systems. The framework treats cetacean communication as analogous to
bacterial quorum sensing: accumulated acoustic density triggers collective behavioral tran-
sitions when crossing learned thresholds. Key innovations include factorized density com-
putation achieving linear scaling, culture-agnostic embeddings enabling cross-population
transfer, adversarial deconfounding for environmental robustness, and streaming architec-
ture for real-world deployment. Three generative model candidates�Threshold-Crossing
HMM, Neural Density Field Model, and Multi-Agent Communication Channel�are uni�ed
under a common data model and evaluation protocol, including causal validation through
playback experiments.
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1 Introduction and Motivation

The central challenge in cetacean communication research is decoding semantic content from
complex, naturalistic acoustic data. Traditional approaches search for discrete lexical units�
�words� or �phrases��but this may fundamentally mischaracterize how meaning emerges in these
systems.

The QTSD framework proposes an alternative: communication as accumulated acoustic

density that triggers collective behavior when crossing thresholds. This is directly analogous
to quorum sensing in bacterial colonies, where accumulated autoinducer molecules trigger coor-
dinated gene expression.

1.1 Core Hypothesis

Rather than individual whales transmitting discrete messages, many individuals vocalize, creat-
ing an acoustic �pressure� that builds until the group collectively shifts behavior. The semantic
content lies not in individual calls but in the density �eld they create.

1.2 Framework Goals

1. Scalability: Linear complexity in population size and recording duration

2. Robustness: Invariance to environmental and recording conditions

3. Generalization: Transfer across populations with distinct cultural patterns

4. Hierarchy: Principled handling of Population ⊃ Pod ⊃ Matriline ⊃ Individual structure

5. Causality: Validation protocols that establish causal, not merely correlational, relationships

2 Symbol Table and Formal Ontology

2.1 Core Symbol De�nitions

Symbol Description Type

Xi
t Raw acoustic features for individual i at time t Rd, Observable

ρt Acoustic density �eld at time t R+, Derived

ϕ(X) Call embedding function Rd → Rk, Learned

K(∆t,∆x) Spatiotemporal in�uence kernel R× R3 → R+

Si
t Latent arousal/attention state {0, 1, 2}, Latent

τb Threshold for behavior type b R+, Latent

Bt Observable group behavior at time t Categorical

Ct Environmental context Rm, Observable

Ai Individual identity Categorical

Θ Global parameters (species-level) Parameter Space

Nt Count of individuals in active state Z+, Derived

et Environment embedding Rdenv , Derived
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2.2 State Interpretation

The latent state Si
t ∈ {0, 1, 2} represents:

� Si
t = 0: Monitoring � Individual is listening, not vocalizing

� Si
t = 1: Active � Individual is currently vocalizing

� Si
t = 2: Refractory � Post-vocalization cooldown period

3 Data Model Speci�cation

3.1 Observed Data Structure

The observed data takes the form:

D =
{
(X1:N

t ,x1:N
t , Bt, Ct)

}T

t=1
(1)

Where:

� X1:N
t : Acoustic observations from N individuals (sparse; most entries null)

� x1:N
t : Spatial positions of individuals

� Bt ∈ {b1, . . . , bK , ∅}: Group behavior label or null

� Ct: Context vector encoding environmental conditions

3.2 Temporal Structure

� Indexing: t ∈ Z+ (discrete, event-driven sampling)

� Stochastic assumption: Semi-Markov process with explicitly modeled dwell times

� Duration bounds: Maximum duration Dmax (recommended: 64 frames)

3.3 Hierarchical Structure

Each level inherits parameters from its parent with low-rank deviations:

θL = θshared +
L∑
l=1

∆θl (2)

where ∆θl = Ul · vl with Ul ∈ RD×rl and rank rl ≪ D.
Recommended ranks: rpopulation = 8, rpod = 4, rmatriline = 2, rindividual = 1.

4 Latent Structure Speci�cation

4.1 Conditional Dependencies

The core probabilistic structure:

p(Si
t | Si

t−1, ρt, Ct,Θ) (Individual state transitions) (3)

p(Bt | Nt, ρt, {τb}, Ct) (Behavior emission) (4)

ρt = f(X1:N
1:t ,x1:N

1:t ,Θϕ,ΘK) (Density computation) (5)
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4.2 Factorized Density Computation

The density computation employs a sliding window with exponential moving average:

ρit =
∑

j∈Neighbors(i,t)

∑
τ∈Window(t)

K(ϕ(Xi
t), ϕ(X

j
τ )) · wτ (6)

Where:

� Window(t) = [t− ktemporal, t] with ktemporal ∈ [64, 256]

� Neighbors(i, t) = TopKspatial with kspatial ∈ [8, 32]

� EMAt = α · EMAt−1 + (1− α) · ht with α ≈ 0.99

Complexity reduction: O((NT )2) → O(N · kspatial · ktemporal · T )

5 Acoustic Embedding Architecture

5.1 Factorized Embedding Structure

The embedding function decomposes into three components:

ϕ(X) = ϕuniversal(X) + ϕcultural(X, popid) + ϕenv(X, et) (7)

Universal Component (∼75% of dimensions):

� Fundamental frequency (F0) contours and derivatives

� Spectral centroid, bandwidth, and �ux trajectories

� Amplitude envelope and modulation spectrum

� Harmonic-to-noise ratio and formant-like spectral peaks

Cultural Component (∼25% of dimensions):

ϕcultural(X, popid) = Upop · vpopid (8)

Environmental Component (Conditional Instance Normalization):

ϕnormalized(X) = γ(et) ·
ϕraw(X)− µ(et)

σ(et)
+ β(et) (9)

5.2 Training Objectives

Lembed = Ltask + λpop_adv · Lpop_adv + λcross_pop · Lcross_pop + λprimitive · Lprimitive (10)

6 Generative Model Candidates

6.1 Candidate A: Threshold-Crossing HMM (TC-HMM)

p(D,S,Θ) = p(Θ)
∏
t

[
p(Bt | Nt, ρt, τ)

∏
i

p(Xi
t | Si

t) p(S
i
t | Si

t−1, ρt)

]
(11)

Transition probability:

p(Si
t = 1 | Si

t−1 = 0, ρt) = σ

(
ρt − τ

ϵ

)
(12)

Behavior emission:

p(Bt = b | Nt, ρt) = Categorical (softmax(Wb · [ρt, Nt])) (13)

Type: Hidden Semi-Markov Model with density-dependent transitions.
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6.2 Candidate B: Neural Density Field Model (NDFM)

p(D,Z,Θ) = p(Θ)
∏
t

p(Xt | Zt,Θx) p(Bt | Zt,Θb) p(Zt | Zt−1, ρt, Ct,Θz) (14)

With GRU dynamics:
Zt = GRU(Zt−1, [ρt, Ct]; Θz) (15)

Type: RNN with attention-based density computation, continuous latent space Zt ∈ Rk.

6.3 Candidate C: Multi-Agent Communication Channel (MACC)

p(D,S,M,Θ) = p(Θ)
∏
t

[
p(Bt | Mt)

∏
i

p(Xi
t | Si

t ,Mt) p(S
i
t | Si

t−1,Mt−1)

]∏
t

p(Mt | Mt−1, {Si
t})

(16)
Shared message pool dynamics:

Mt = (1− γ)Mt−1 +
∑
i

1[Si
t = active] · ϕ(Xi

t) (17)

Type: Communication channel with explicit encoder/decoder structure.

7 Inference Objectives

7.1 Primary Objectives

(OBJ-1) Posterior Inference:

Ŝ1:T , Ẑ1:T = argmax
S,Z

p(S1:T , Z1:T | X1:T , B1:T , C1:T , Θ̂) (18)

(OBJ-2) Predictive Likelihood Maximization:

Θ∗ = argmax
Θ

∑
sessions

log pΘ(B1:T | X1:T , C1:T ) (19)

(OBJ-3) Density-Behavior Mutual Information:

Θ∗ = argmax
Θ

IΘ(ρ1:T ;B1:T | C1:T ) (20)

Subject to rate constraint: IΘ(Xt;ϕ(Xt)) ≤ R

7.2 Composite Loss Function

L(Θ) = Llikelihood + λMILMI + λARDLARD + λbehaviorLbehavior + λenv_advLenv_adv (21)

8 Identi�ability Constraints

8.1 Sources of Degeneracy

1. Scale ambiguity: ϕ′ = c · ϕ, τ ′ = c · τ yield equivalent models

2. Individual-embedding confound: Variation in τi versus ϕi

3. Environmental confounds: Ct may directly cause Bt

4. Cultural bias: Population-speci�c patterns in universal representations
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8.2 Formal Constraints

(C1) Scale Normalization:
E[∥ϕ(X)∥22] = 1 (22)

(C2) Threshold Separation:

|τb − τb′ | ≥ δ ∀b ̸= b′ (23)

(C3) Information Bottleneck:

I(ϕ(X);X) ≤ R, I(ϕ(X);B) ≥ β (24)

(C4) Context-Invariance:

VarC [E[B | ρ, C]] ≤ η ·Var[E[B | ρ]] (25)

(C5) Temporal Consistency (Lipschitz):

∥Zt − Zt+1∥2 ≤ L · ∥ρt − ρt+1∥2 (26)

(C6) Threshold Sparsity:

|{b : τb is distinct}| ≤ Kmax (27)

(C7) Population Invariance:

I(ϕuniversal(X); popid) ≤ ϵcultural (28)

(C8) Environment Invariance:

I(Zt; envid) ≤ ϵenv (29)

9 Experimental Protocols

9.1 Protocol 1: Behavior Prediction from Density

Component Speci�cation

Train Dtrain = {(ρt, Bt, Ct)} from sessions 1, . . . , n
Test Dtest from held-out sessions

Metrics M1 = Accuracy(B̂t, Bt), M2 = AUC-ROC
Baseline M0

1 : predict Bt from Ct alone
Success M1 −M0

1 ≥ δ1

9.2 Protocol 2: Threshold Stability Across Groups

Component Speci�cation

Train Estimate τ̂b on pods P1, . . . , Pk

Test Apply τ̂b to new pod Pk+1

Metric M3 = Varpods[τ̂b]/E[τ̂b] (CV)
Success M3 ≤ ϵspecies
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9.3 Protocol 3: Playback Intervention (Causal Test)

Component Speci�cation

Intervention Inject synthetic calls X̃ to raise ρt
Prediction Model predicts P (Bt = b | ρt +∆ρ)
Observation Measure actual Bobs

t

Metric M4 = KL(Ppredicted∥Pobserved)
Success M4 ≤ ϵcausal

9.4 Protocol 4: Cross-Environment Generalization

Component Speci�cation

Train Subset of environments Etrain

Test Held-out environments Etest

Metric M5 = Performance ratio Etest/Etrain

Success M5 ≥ 0.85 without TTA, ≥ 0.95 with TTA

9.5 Protocol 5: Cross-Population Transfer

Component Speci�cation

Train Populations Pop1, . . . ,Popk
Test Novel population using ϕuniversal only
Metric M6 = Zero-shot behavior prediction accuracy
Success M6 ≥ 0.7× within-population performance

10 Con�guration Reference

10.1 Core Hyperparameters

Parameter Recommended Description

ktemporal 64�256 Temporal window size
kspatial 8�32 Maximum spatial neighbors
Dmax 32�128 Maximum HSMM duration
dembed 128�512 Total embedding dimension
duniversal 0.75× dembed Universal embedding dimension
Kneg 16�256 Negatives per MI anchor
Kbeh 16�64 Behavior prototypes
chunk_length 1024�8192 Training chunk size
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10.2 Regularization Weights

Parameter Default Description

λMI 0.1 MI objective weight
λARD 0.01 ARD prior weight
λbehavior 0.1 Behavior prototype weight
λenv_adv 0.3 Environment adversarial weight
λpop_adv 0.5 Population adversarial weight
λind_adv 0.3 Individual adversarial weight
βIB 0.01 Information bottleneck weight

11 Discussion

11.1 Strengths of the Framework

1. The quorum-sensing analogy is biologically plausible and o�ers a departure from lexical ap-
proaches

2. Identi�ability analysis anticipates and addresses mathematical degeneracies

3. Experimental protocols include causal validation, not just correlational measures

4. Multiple model candidates enable principled model selection

5. Streaming architecture addresses real-world deployment requirements

11.2 Limitations and Future Directions

1. Call-type speci�city: Current formulation pools all vocalizations; call-type-speci�c density
�elds may be needed

2. Directed communication: No modeling of who responds to whom

3. Silence as information: Only vocalizations are modeled; silence patterns may carry se-
mantic content

4. Temporal microstructure: Call-internal modulation patterns not captured

5. Baseline comparisons: Simpler models (e.g., call count) needed for rigorous evaluation

11.3 Conclusion

The QTSD framework provides a mathematically rigorous, implementation-ready speci�cation
for decoding cetacean communication. By treating vocalizations as contributions to a collec-
tive density �eld rather than discrete messages, it o�ers a fundamentally di�erent approach
to the semantic decoding problem. The inclusion of causal validation protocols�particularly
playback experiments�provides a path to distinguishing genuine communicative function from
mere correlation.

This document was produced through the Sif system in under 2 hours, demonstrating AI-

accelerated R&D capabilities.
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